
Investigating the Effect of Fault Category on
Overall Capture Probability during Requirements

Inspection
Tejalal Choudhary1, Anurag Goswami2

Computer Science Department
 Sushila Devi Bansal College of Technology, Indore, India

Computer Science Department
North Dakota State University, Fargo, USA

Abstract— Inspection helps software managers by eliminating
faults in early phases of Software Development Lifecycle
(SDLC). Capture-recapture is a technique which provides an
estimates of faults remaining in a software artifact. This helps
managers to make a decision whether a re-inspection is
required or not. At a higher level, software requirements
document consists of general faults, faults of omission and
faults of comission. A common belief is that the faults that are
visible in the artifact are easier to detect by the inspectors. The
nature of faults that could be detected by inspectors has not
been empirically studied. Using the inspection data from
varying number of students, we analyzed the category (general
or omission or comission) of faults that are easier to detect by
the inspectors. The results from this study shows that faults of
comission are significantly easier to detect by the inspectors.

Keywords— Inspections, Requirements/Specifications, Review.

I. INTRODUCTION

Requirements and design document are early artifacts
that are developed during initial phases of Software
Development Lifecycle (SDLC). A successful software
organization thrives to build quality software product within
allocated budget and time [1]. Evidence shows that faults are
introduced in early artifacts (i.e. requirements and design
documents) during their development. These faults are
harder to find and fix if problems are left undetected and
penetrate to later stages of development [2]. While 50-80%
of development effort is spent at the testing stage, it is
estimated that 40-50% of this is spent on fixing faults
committed during the early stages [3]. To deliver a quality
software product within the available resources, researchers
have focused on validating methods of prevention and
detection of early lifecycle faults [4].

Software requirements development is the first and most
critical phase of SDLC. This phase involves gathering of
requirements from different stakeholders (technical and non-
technical both) and are recorded in a document known as
Software Requirements Specification (SRS). SRS is often
written in Natural Language (NL) which is a means of
communication among different stakeholders, is specially
defect prone due to its complex, imprecise, vague and
ambiguous characteristics.

To eliminate early faults in software artifacts, software
inspections are widely used [5] and are empirically
validated [6]. Inspection process includes examining a
software artifact by a group of inspectors to uncover faults

in it. Inspections saves cost by avoiding costly rework and
thereby, improving quality of software artifacts [7]. During
an inspection, inspection team leader first selects a team of
skilled individuals (as inspectors) who will perform
inspections. Evidence in past shows that the effectiveness
of an inspector during the individual review of software
artifact significantly impacts the overall effectiveness of the
inspection as a team [8].

Project manager needs an objective and reliable
information which helps them to decide what category
(general/omission/comission) of faults are easier to detect
by the requirements inspectors. This would help them to
concentrate better towards the training part of inspectors.
To achieve this objective this research utilizes the most
appropriate method of faults estimation known as capture-
recapture [9, 10].

A controlled empirical study was conducted at Sushila
Devi Bansal College of Technology (SDBCT). Participants
performed an individual inspection of a NL requirements
document using fault-checklist technique and logged the
faults found during the inspection. By using the capture-
recapture technique, faults detected, its category
(general/omission/comission), and number of inspectors to
estimate the category of faults that are easier to detect were
provided as an input. The results from this study show that
fault of comission significantly easier to detect by the
inspectors as compared to faults of omission.

II. BACKGROUND

This section provides background information regarding
fault-checklist that is used for inspections (Section II.A).
Section II.B describes capture-recapture models with a brief
description of use of capture-recapture models in SE.

A. Fault-checklist Technique

Fault-checklist is one of the most popular way of
performing an inspection [11]. In this method inspectors are
provided with a fault-checklist using which they can guide
inspections [12]. Fault-checklist consists of fault category
and types of faults lie in those categories. Below is a brief
description of fault category and its types.

General (G)
 Are the goals of the system defined?
 Are the requirements clear and unambiguous?

Tejalal Choudhary et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (4) , 2014, 5620-5624

www.ijcsit.com 5620

 Is a functional overview of the system provided?
 Is an overview of the operational modes provided?
 If assumptions that affect implementation have been

made, are they stated?
 Have the requirements been stated in the terms of

inputs, outputs, and processing for each function?
 Are all functions, devices, constraints traced to

requirements and vice versa?
 Are the required attributes, assumptions and constraints

of the system completely listed?

Omission (O)
 Missing Functionality (MF)

 Are the desired functions sufficient to meet the
system objectives?

 Are all inputs to a function sufficient to perform
the required function?

 Are undesired events considered and their required
responses specified?

 Are the initial and special states considered (e.g.,
system initiation, abnormal termination)?

 Missing Performance (MP)
 Can the system be tested, demonstrated, analyzed

or inspected to show that it satisfies the
requirements?

 Missing Interface (MI)
 Are the inputs and outputs for all interfaces

sufficient?
 Are the interface requirements between hardware,

software, personnel and procedures included?
 Missing Environment (ME)

 Have the functionality of hardware or software
interacting with the system been properly
specified?

Comission (C)
 Ambiguous Information (AI)

 Are the individual requirements stated so that they
are discrete, unambiguous, and testable?

 Are all mode transitions specified
deterministically?

 Inconsistent Information (II)
 Are the requirements mutually consistent?
 Are the functional requirements consistent with the

overview?
 Are the functional requirements consistent with the

actual operating system?
 Inconsistent and Extra Functionality (EF)

 Are all desired functions necessary to meet the
system objectives?

 Are all inputs to a function necessary to perform
the required function?

 Are the inputs and outputs for all interfaces
necessary?

 Are all the outputs produced by a function used by
another function or transferred across an external
interface?

 Wrong Section (WS)
 Are all the requirements, interfaces, constraints,

etc. listed in the appropriate sections?

Inspectors can use these guidelines and can record fault
with their appropriate fault category and type in a category.

B. Capture-Recapture (CR) Overview

CR is a technique originally developed by biologists to
statistically estimate the size of wildlife populations. The
following process is followed by biologists to estimate the
wildlife population:
 A biologist captures fixed number of animals, mark

them as captured, and release them back into the
population.

 Next, another capture (trapping) occasion occurs after
animals get chance to remix. If an animal marked in the
first occasion is found again, then it is known as
recaptured.

 This process is repeated multiple times. A large overlap
of animals in different trapping indicates a smaller
population [13, 14].

Using the same CR principle, faults are estimated for an
artifact during inspections. During inspections, faults are
detected by an inspector. If the same fault is detected
(captured) by another inspector then it is known as to be
recaptured [9, 10]. The whole process of estimating total
faults are same as followed by biologists. Animals are
replaced by the faults in an artifact and trappings are
replaced by the inspectors.

There are some assumptions [9, 10] of CR in wildlife
research that does not hold true for software requirements
inspection. This could be understood more from Table I. A
closed population (all inspectors detect faults in the same
artifact without any modifications) and capture marks are
not lost (faults are recorded by each inspector) assumptions
are met. But in inspections, due to the different abilities of
inspectors, equal capture probability assumption is not met
[15, 16].

Details of the models in CR estimation with CARE-4
tool has been derived by Huggins [17]. In this study model
MMth is taken. Which means, inspectors differ in their
inspection ability as well as defects have different
probability of being found. The mathematical
implementations are not provided in this paper but can be
found in the references provided. The input data used by
CR estimators is organized as a matrix with rows
representing faults and columns representing inspectors.
Also, the number of attributes of faults (one in this study,
i.e. fault category) is represented by last number of columns
as shown in Fig. 1. A matrix entry is 1 if the fault (A) is
detected by an inspector (C) and 0 otherwise. The column
of fault attribute (D) follows the number attributes a fault
has (in this case it is one i.e. fault category).

TABLE I. DIFFERENCE IN ASSUMPTIONS OF CR IN INSPECTIONS

S.No. Wildlife Inspections

1. A closed population A closed population

2. An equal capture probability Some faults are easier to detect

3. Capture marks are not lost Capture marks are not lost

Tejalal Choudhary et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (4) , 2014, 5620-5624

www.ijcsit.com 5621

Erick, et al. introduced CR in software inspections by
applying it on the real AT&T data. His major
recommendation was that an artifact should be reinspected
if it contains more than 20% of undetected faults [9, 18].
Various research followed this study and evaluated the use
of CR model in SE [10]. Prior work evaluated that the CR
models usually underestimate the true fault count, but their
estimation accuracy improves as number of inspectors are
increased [19]. However, the prior CR studies neglected the
effect of fault category on inspection. The existing CR
studies in SE used artifacts with seeded number of defects
but in this study, requirements document contains naturally
occurring faults (i.e. faults manifested during development
of SRS). This work extends CR estimates to fault attributes
(i.e. fault category in this study), known as individual
covariates.

III. EXPERIMENT DESIGN

The primary motivation for this study was to provide an
evidence that one of the fault category (i.e. general,
omission and comission) has a higher probability to be
detected (i.e. captured) by requirements inspector during
inspection. Data set was utilized where participants used the
fault-checklist to guide inspections of the software
requirements and reported faults.

A. Research Goal

To investigate the effect of various fault categories on
overall capture probability of faults in inspection.

B. Data Set

Our study uses data from an inspection study conducted
at SDBCT during 2013. The following subsection describes
the data sets in terms of the artifacts inspected, the types of
faults, the inspectors and the inspection process followed.

Data Set: Data set came from an in-class inspection
study conducted at SDBCT where a NL requirement artifact
was individually inspected by thirty participants over a
period of ninety minutes.

Artifacts: participants in the study were given
requirement document (developed internally by the students
in 2010) that described the requirements for Online Polling
System (OPS). The OPS system is responsible for
registering users and enabling them to poll for a political
party with the help of a web application. This system gave
the users the ability to poll for their favourite candidate
while being at either work place or at their homes, it also
gives the polling administrator a better manageability over
the candidates/people registered, and election results.

Faults: The faults in the artifact were natural faults that
occurred during the development of requirements document.
A master fault list was created which contained the faults
detected by the participants as well as faults detected by one
of the researcher. This data set consists a total of 48
naturally occurring faults.

Inspectors: The 30 inspectors for study were students
enrolled in the Computer Science course during 2013. The
subject (minor project) cover the understanding of the
importance of Software Engineering (SE) and its processes.
This subject covers the requirements and design
development and the necessary skills for planning, analysis,
and design of software system.

C. Experiment Procedure

Step 1: Training and Inspecting SRS for Faults: During
the training, the participants received the SRS document for
the OPS system, the fault-checklist and a list of different
fault types. They were instructed on how to use the fault-
checklist to record faults using a set of example
requirements. All the participants were instructed by the
same instructor.

Step 2: Inspection of OPS SRS: Next, the subjects
individually inspected the OPS requirement document using
the fault-checklist and log faults during the inspection.

In addition, the fault reporting forms required the
subjects to classify the faults identified during the inspection
into one of the following fault types: General (G), Missing
Functionality (MF), Missing Performance (MP), Missing
Information (MI), Missing Environment (ME), Ambiguous
Information (AI), Inconsistent Information (II), Extraneous
(EF), Wrong Section (WS), and Others (O).

The researcher validated that the fault reported by each
participant were true positives. The researcher, who had
knowledge of the system for which the requirements were
developed, read through the faults reported by each
participant to remove any false-positives before analyzing
the data. Researcher also placed faults found in their
required category (i.e. General, Omission, and Comission)
as participants only marked fault type.

D. Evaluation Criterion

This section explains the procedure used to evaluate the
research goal (Section III.A). A tool was used known as
CARE-4 developed by Hsin-Chou Yang and Anne Chao
from Institute of Statistics, National Tsing Hua University,
Hsin-Chu, Taiwan. The tool can be downloaded from the
link below:

http://chao.stat.nthu.edu.tw/blog/software-
download/care/

This tool uses the concept of capture-recapture technique
to estimate the total population as well as impact of various
attributes/properties of population (known as individual
covariates in CARE-4) [20, 21]. In one of the capture-
recapture experiments [19], one author have used the
previous version of this tool known as CARE-2 which only
estimates the total population without taking their attributes

Fig. 1: CR data input matrix

Tejalal Choudhary et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (4) , 2014, 5620-5624

www.ijcsit.com 5622

(i.e. individual covariates) into account. CARE-4 takes the
input in the form of matrix (described in Section II.B).

The general logistic model MM*tbh is:
 logit(P_ij)=a + c_j + v * Y_ij + beta * W_i + r * R_j

where,
i : refers to the ith individual;
j : refers to the jth sample or jth capture occasion;
a : baseline intercept;

c_j : the unknown time or occasional effect of the jth
capture occasion (set c_t=0, where t: the number of
capture occasions;

v : (behavioral response) the effect w.r.t. the past capture
history indicator Y_ij;

beta : the effect of individual covariates W_i;
r : the effect of occasional covariate R_j;

The tool automatically computes all the estimates with
two types of covariates: individual covariates of population
(i.e. faults) and occasional covariates which are the
properties of any external factor (e.g., capture during day or
night) [20]. The covariates could be discrete (e.g., gender)
or continuous (e.g., weight in kilograms). In this experiment,
there are not any occasional covariates. Below (Fig.2) is the
actual fault matrix created for the tool as an input for 30
participants as inspectors and 48 faults along with one
individual covariate as fault category. In Fig. 2, I1, I2… I30
are inspectors and IC1 is Individual Covariate 1 (i.e. fault
categories) which are marked as General: 1, Omission: 2,
and Comission: 3 in the input matrix.

Following are the steps performed in CARE-4 tool to
estimate the probability of fault category detected by 30
inspectors:

 Select analysis with covariates in options.
 Input the number of distinct individuals (48 faults)

and sampling occasions (30 inspectors).
 Input number of individual covariates (1 i.e. fault

category).
 Input number of continuous individual covariates

(0).
 Input the fault matrix created (Fig. 2).
 Input the number of occasional covariates (0).
 Input the number of continuous occasional

covariates (0 again).
 Input unknown time effects y or n? (‘n’)
 Provide the output file path which saves the results

of CR estimation with covariates (i.e. includes
fault properties).

IV. ANALYSIS AND RESULTS

The analysis of impact of fault category on the
probability of detecting faults focuses on research goal in
section III.A. This section evaluates the effect of fault
categories on the inspection effectiveness. As stated earlier
all 30 participants perform individual inspections of OPS
document using fault-checklist technique which turns out to
be individual inspection data, shown in Fig. 3. Individual
results are combined with fault category to form CR input
matrix for CARE-4 tool. Fault categories comprises of G:
general, O: omission, and C: comission faults.

To provide an overview of the results, Fig. 4 compares
the number of faults found in each category by 30 inspectors.
Results are arranged by increasing fault category number.
Solid bar represents actual number of faults that exists for a
category and stripped bar represents the number of times a
fault category is detected by 30 inspectors. To understand
the impact of different fault categories, results are organized
by the increasing number of fault categories (General: 1,
Omission: 2, and Comission: 3).

The results from Fig 4 shows that the ratio between
number of times a fault category is detected to number of
faults of a category present is highest for general faults
(3.68), then it is for comission faults (2.73) and lest one is
for omission faults (1.9). Which means general faults have
higher tendency to be detected during an inspection but due
to less number of general faults present in OPS this cannot
be validated. For comission faults results could hold true that
their detection probability is highest among all three fault
categories.

Fig. 4: Comparison of different fault categories on inspection

Fig. 2: Actual input matrix for CARE-4 CR tool

Fig. 3: Individual inspection data

Tejalal Choudhary et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (4) , 2014, 5620-5624

www.ijcsit.com 5623

 To evaluate research goal, input matrix was provided to
CARE-4 tool which outputs the regression coefficient along
with Standard Error. In this study we have selected MMth
model for results (as faults does not have any behavior like
animals). Results show that omission faults have strong
negative (-0.78) and general faults have positive but weak
(0.36) regression coefficient (with standard error 0.14 and
0.18) with reference to comission faults.

 Therefore, based on these results, during an inspection
guided by fault checklist method, faults of comission does
appear to have higher probability of getting detected
(captured) during a requirement inspection. While the result
is positive for general faults but they are not significant.

V. THREATS TO VALIDITY

In this experiment some of the validity threats were
addressed. Same SRS for all the participants was used which
handled the heterogeneity effect. Participants were selected
from the same course (i.e. same level of educational
background). To address the training bias, all the
participants obtained training from one trainer. Fatigue
effect was also handled because participants had enough
time to perform requirements inspections where they can
work in their comfortable environment and can take breaks.
However, participants were students from academic settings
and are likely not represent professionals in an industry
setting with practical experience. Actual number of faults
present were not known, as SRS document has natural
faults.

VI. DISCUSSION OF RESULTS

A major focus of this study is to find out the effect of
different fault categories on inspection. Research goal
focused on understanding whether probability of a particular
fault category detection is higher during requirements
inspection as compared to other categories. The results from
Section IV showed that the faults of comission has a higher
probability of getting detected during inspection. This
means, faults that are not visible in the requirements
document are not easy to be detected by the inspectors in
inspection. When the result was tested statistically, there was
a significant negative regression coefficient for fault of
omission. Therefore, it is easy to detect mistakes as
compared to detect content which has to be in requirements
document.

VII. CONCLUSION AND FUTURE WORK

 Based on the results provided in this paper, concept of
CR along with covariates (population/individual properties)
can help to manage the quality of software by laying more
stress on detecting fault of omission during inspections.
CARE-4 tool can be used to extend various CR studies
which does not include covariates of individuals. This
concept can also be extended to other phases of software
development (e.g., design review, code review etc). These
results motivate us for further investigation. Immediate
future works includes replicating the studies for larger data
sets which would also include investigation of different fault
types. Another future work is to replicate the research
studies during the inspection of the design documents and
the code and the test plan reviews.

REFERENCES
[1] Nalbant, S.: ‘An Evaluation of the Reinspection Decision Policies for

Software Code Inspections’, MIDDLE EAST TECHNICAL
UNIVERSITY, 2005

[2] Boehm, B., and Basili, V.R.: ‘Software defect reduction top 10 list’,
Foundations of empirical software engineering: the legacy of Victor
R. Basili, 2005, 426

[3] Perry, W.E.: ‘Effective Methods for Software Testing: Includes
Complete Guidelines, Checklists, and Templates’ (John Wiley &
Sons, 2006. 2006)

[4] Leszak, M., Perry, D.E., and Stoll, D.: ‘A case study in root cause
defect analysis’. Proceedings of the 22nd international conference on
Software engineering2000 pp. 428-437

[5] Fagan, M.E.: ‘Design and code inspections to reduce errors in
program development’: ‘Pioneers and Their Contributions to
Software Engineering’ (Springer, 2001), pp. 301-334

[6] Doolan, E.: ‘Experience with Fagan's inspection method’, Software:
Practice and Experience, 1992, 22, (2), pp. 173-182

[7] Ackerman, A.F., Buchwald, L.S., and Lewski, F.H.: ‘Software
inspections: An effective verification process’, IEEE software, 1989,
6, (3), pp. 31-36

[8] Porter, A., Siy, H., Mockus, A., and Votta, L.: ‘Understanding the
sources of variation in software inspections’, ACM Transactions on
Software Engineering and Methodology (TOSEM), 1998,
7,(1),pp.41-79

[9] Briand, L.C., El Emam, K., Freimut, B.G., and Laitenberger, O.: ‘A
comprehensive evaluation of capture-recapture models for estimating
software defect content’, Software Engineering, IEEE Transactions
on, 2000, 26, (6), pp. 518-540

[10] Petersson, H., Thelin, T., Runeson, P., and Wohlin, C.: ‘Capture–
recapture in software inspections after 10 years research––theory,
evaluation and application’, Journal of Systems and Software, 2004,
72, (2), pp. 249-264

[11] Thelin, T., Andersson, C., Runeson, P., and Dzamashvili-Fogelstrom,
N.: ‘A replicated experiment of usage-based and checklist-based
reading’. Software Metrics, 2004. Proceedings. 10th International
Symposium on2004 pp. 246-256

[12] Thelin, T., Runeson, P., and Wohlin, C.: ‘An experimental
comparison of usage-based and checklist-based reading’, Software
Engineering, IEEE Transactions on, 2003, 29, (8), pp. 687-704

[13] Lee, S.M., and Chao, A.: ‘Estimating population size via sample
coverage for closed capture-recapture models’, Biometrics, 1994, pp.
88-97

[14] White, G.C.: ‘Capture-recapture and removal methods for sampling
closed populations’ (Los Alamos National Laboratory, 1982. 1982)

[15] Boehm, B.W.: ‘Software engineering economics’, 1981
[16] Sabaliauskaite, G.: ‘Investigating defect detection in object-oriented

design and cost-effectiveness of software inspection’, Citeseer, 2004
[17] Yang, H.C., and Chao, A.: ‘Modeling animals' behavioral response

by Markov chain models for capture–recapture experiments’,
Biometrics, 2005, 61, (4), pp. 1010-1017

[18] Eick, S.G., Loader, C.R., Long, M.D., Votta, L.G., and Vander Wiel,
S.: ‘Estimating software fault content before coding’. Proceedings of
the 14th international conference on Software engineering1992 pp.
59-65

[19] Walia, G.S., and Carver, J.C.: ‘Evaluation of capture-recapture
models for estimating the abundance of naturally-occurring defects’.
Proceedings of the Second ACM-IEEE international symposium on
Empirical software engineering and measurement2008 pp. 158-167

[20] Huggins, R.: ‘Some practical aspects of a conditional likelihood
approach to capture experiments’, Biometrics, 1991, pp. 725-732

[21] Huggins, R.: ‘On the statistical analysis of capture experiments’,
Biometrika, 1989, 76, (1), pp. 133-140

Tejalal Choudhary et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (4) , 2014, 5620-5624

www.ijcsit.com 5624

